Worldwide largest closed algae production plant

IGV hands over worldwide largest closed algae production plant in Spain

Anlage_Spanien_1 After EADS and IGV together demonstrated the first flight with 100% algal fuel on the international air show ILA 2010, a further milestone was achieved in the development of algae mass cultivation for oil-production. On February 10, 2011 the algae production plant „PBR 85.000“ of the IGV GmbH Potsdam was handed over ready for production and accepted by the Spanish Aurantia-group.
The site is situated in the sun-drenched Andalusia in Southern Spain, near to Jerez. The photobioreactor = PBR has a total volume of 85.000 liter and is therefore the world’s largest closed facility for the production of microalgae ever build and successfully brought into operation. In 35 kilometer glass tube on a footprint of 1.000 m², in which algae capture sunlight and efficiently photosynthesize, they generate energy rich oils which can be used in the production of fuels.

Up to now such a density was never reached and implemented so far. The 85.000 liter- facility is a culmination point in the 30 year development work of IGV as well as internationally for the development of microalgal biotechnology.
Nevertheless IGV researchers do not dwell on this milestone but already develop a new and even more efficient reactor type in which algae, for instance for aviation fuels, will be produced economically.
The Land Government of Brandenburg together with large corporations strongly back this development.

Source: http://www.igv-gmbh.com/news/press/worldwide-largest-closed-algae-production-plant.html

The Algae That Makes Petroleum Story

Dr. Timothy Devarenne, AgriLife Research scientist with the Texas A&M University department of biochemistry and biophysics points out, “Oils from the green algae Botryococcus braunii can be readily detected in petroleum deposits and coal deposits suggesting that B. braunii has been a contributor to developing these deposits and may be the major contributor. This means that we are already using these oils to produce gasoline from petroleum.”  He’s implying rather directly that green algae producing hydrocarbon oil as a biofuel production process is nothing new; nature has been doing so for hundreds of millions of years.

Devarenne explains B. braunii is a prime candidate for biofuel production because some races of the green algae typically “accumulate hydrocarbons from to 30 percent to 40 percent of their dry weight, and are capable of obtaining hydrocarbon contents up to 86 percent of their dry weight.”  These are impressive numbers. “As a group, algae may be the only photosynthetic organism capable of producing enough biofuel to meet transportation fuel demands,” he says.

Botryococcus braunii. Click image for more info.

 

Devarenne is part of a team comprised of other scientists with AgriLife Research, the University of Kentucky and the University of Tokyo trying to understand more about B. braunii, including its genetic sequence and its family history.  The point is, “Without understanding how the cellular machinery of a given algae works on the molecular level, it won’t be possible to improve characteristics such as oil production, faster growth rates or increased photosynthesis,” he says.

B. braunii, like most green algae, is capable of producing great amounts of hydrocarbon oils in a very small land area.  B. braunii algae show particular promise not just because of their high production of oil but also because of the type of oil they produce.. While many high-oil-producing algae create vegetable-type oils, the oil from B. braunii, known as botryococcenes, are similar to petroleum.

Devarenne explains, “The fuels derived from B. braunii hydrocarbons are chemically identical to gasoline, diesel and kerosene. Thus, we do not call them biodiesel or bio-gasoline; they are simply diesel and gasoline. To produce these fuels from B. braunii, the hydrocarbons are processed exactly the same as petroleum is processed and thus generates the exact same fuels. Remember, these B. braunii hydrocarbons are a main constituent of petroleum. So there is no difference other than the millions of years petroleum spent underground.”  He is almost making a new explanation of the formation of fossil fuels – which in this process wouldn’t be “fossil” at all.  Interesting.

B. braunii has a problem – a relatively slow growth rate. While the algae that produce ‘vegetable-type’ oils may double their growth every six to 12 hours, B. braunii’s doubling rate is about four days.  Devarenne says, “Thus, getting large amounts of oil from B. braunii is more time consuming and thus more costly. So, by knowing the genome sequence we can possibly identify genes involved in cell division and manipulate them to reduce the doubling rate.”

Here’s a surprise for you. Despite these characteristics and economic potential of algae, only six species of algae have had their genomes fully sequenced and annotated, Devarenne said. And B. braunii is not one of the six.  I was surprised at such a low number too.  Craig Venter with the Exxon effort must likely be on this as well as others, all with proprietary data.

Another point that may be delaying the genetic work is the nature of the algae.  Devarenne explains, “Genomes with high guanine-cytosine content can be difficult to sequence and knowing the guanine-cytosine content can help to assess the amount of resources needed for genome sequencing,” Guanine-cytosine bonds are one of base pairs composing DNA structure. Adenine-thymine is the other possible base pair.

Devarenne and his colleagues are working the Berkeley strain of the B race of B. braunii, so named because it was first isolated at the University of California at Berkeley. The team has determined the genome size and an estimate of the B race’s guanine-cytosine content, both of which are essential to mapping the full genome, he said. There are also races A and L of B. braunii, but they were not looked at by the team.

The team has determined B. braunii’s genome size to be 166.2 ± 2.2 million base pairs, Devarenne said. In comparison the size of the human genome is about 3.1 billion base pairs. The genome of the house mouse is also about 3 billion base pairs. But the B. braunii genome size is larger than any of the other six previously sequenced green algae genomes.

The actual genome sequencing and mapping will be performed by Department of Energy’s Joint Genome Institute.

“We’ve submitted genomic DNA from B. braunii for the Joint Genome Institute to use in sequencing, but that hasn’t begun yet,” Devarenne said.

Its not new or a secret that B. braunii is an interesting algae.  Rather the news is that now the sophistication and depth of research is getting much further into the field – and it’s a very big field.  Pulling out genomes from algae known to form essentially petroleum oil is quite fascinating. The matter remains to be seen if modification skill can push productivity to comparable levels with vegetable oil producing species.  Then the list of production issues must be solved.

If B. braunii or its close cousins can be modified to get to high production and the other production issues have solutions, the oil supply issue will begin its decent into history.

Source: http://newenergyandfuel.com/http:/newenergyandfuel/com/2010/03/16/the-algae-that-makes-petroleum-story/

AIT Austrian Institute of Technology GmbH

Plant and Algae Production Improvement Tools

When using photosynthesis as production system for biomass, raw materials can be obtained while simultaneously sequestering CO2. Our collection of micro-algae is used for the development of new solutions for biomass and compound production as well as CO2 capturing from flue gas. Our primary focus is on the production of storage oil and its bandwidth of fatty acids, enhancing productivity by means of molecular analysis and biotechnology.

Another group of projects focuses on the exploitation of higher plants for the production of improved raw materials, healthy food, and increased biomass. We provide support to plant breeders through the development and implementation of customized selection procedures involving molecular genetic tools. Our small but highly specific in vitro collection of potato hybrids captures powerful and novel disease resistance genes. These genetic resources are explored at the molecular level and transferred to the breeding programs of our commercial partners. Similarly, we explore the molecular genetics of other important plant traits, such as the formation of starch macromolecules (potato) and wood density (spruce) and support our costumers in the implementation of innovative plant selection techniques.

Source: http://www.ait.ac.at/research-services/research-services-health-environment/molecular-screening-tools-for-microbial-and-plant-selection/plant-and-algae-production-improvement-tools/?L=1

Golden-Brown Algae

The golden-brown algae include both the chrysophytes and the synurophytes. The motile chrysophytes are sometimes referred to as the chrysomonads. Both the chrysophytes and synurophytes are most abundant and diverse in freshwaters of neutral or slightly acidic pH with low conductivity, alkalinity, and nutrient levels and colder temperatures, but may also inhabit a variety of environments.

Chrysophytes and synurophytes are heterokonts in either the vegetative or reproductive stage. Heterokont cells have two unequal flagella. One is long, covered in two rows of tripartite hairs, and is located on the cell anterior, while the other is short, smooth, and directed laterally or posteriorly, perpendicular to the longer flagellum. The flagella may be covered in scales. The longer flagellum moves with a flat, S-shaped motion to propel unicellular organisms forward; the short flagellum beats helically to allow colonial forms to swim with a rotational motion.

Chrysophytes are both photosynthetic and heterotrophic. They may be phagotrophic – engulfing particulate matter such as bacteria or small algae, or osmotrophic – absorbing organic molecules. The long flagellum is used as a feeding apparatus in some species by directing the water current and food particles towards the cell. The unicellular genus Ochromonas is often considered the “model chrysophyte” with cellular morphology and function typical of the group.

The synurophytes, commonly called the scaled chrysophytes, are motile flagellates covered by siliceous scales. Each cell has one or two golden-colored chloroplasts and two parallel flagella that emerge from an anterior pore or from in between scales. This group lacks the pigment chlorophyll c2 seen in the chrysophytes, and relies on photosynthesis as their sole energy source since they have lost their mixotrophic abilities. Most species have different types of scales that are found in specific locations on the cell. The scales vary in form, but generally consist of a base plate with an upturned rim and often have domes, ribs, pores, or spines. The scale design is unique to a particular species and is used in identification. The synurophytes currently include only four genera. Mallomonas, Synura, and Chrysodidymus are found in North America, while Tessellaria is found only in Australia.

Like the siliceous remains of diatom cells, synurophyte scales persist in sediments and are valuable tools for paleolimnologists and ecologists interested in the changes in ecological conditions over time. The synurophytes are excellent bioindicators as they inhabit particular environmental niches and are especially sensitive to pH and the presence of pollutants. Many species are useful in long-term monitoring of water quality and environmental conditions, and species distributions along dissolved salt, trophic, and temperatures gradients are of great use to ecologists.

All synurophytes undergo a siliceous resting stage. Both sexual and asexual reproduction can produce a cyst, often in response to changes in environmental conditions or population density. Like the synurophyte scales, the hollow, rounded cysts are formed within silica deposition vesicles.

Source: http://silicasecchidisk.conncoll.edu/LucidKeys/Carolina_Key/html/Golden_browns.html