How an Algae Company is Working to Mitigate Harmful Algal Blooms in Nature


Dr. Stephanie Smith
Chief Scientist at Algaeventure Systems

In the quest to find cheap and abundant sources of energy, many companies and research organizations have turned to algae. Much of their research has been focused on maximizing algal growth. However, increased algal growth can often become harmful if in a natural setting. One algae company, Algaeventure Systems, is actually looking at ways to lessen the effects of these “harmful algal blooms” (HABs) in the environment. Dr. Stephanie Smith is the lead scientist at Algaeventure and answered the following questions about HABs.

1. What are the main causes of harmful algal blooms (HABs)?

The causes vary from site to site, and there are typically multiple factors that converge at the same time to contribute to a bloom. It boils down to this: why didn’t the algae bloom before, or why don’t they always bloom? In other words, there are natural checks and balances on algal populations (all populations, really), and when those checks and balances are disrupted it can lead to a bloom.

In the case of many inland lakes, the thing that keeps algae that cause HABs in check is often nutrients, especially phosphorus and nitrogen. Typically those nutrients are not in high enough concentrations in a lake to allow the HAB algae to flourish, but a variety of things can lead to nutrient-rich conditions (agricultural runoff is often blamed, albeit not always fairly). And if the nitrogen goes away but the phosphorus is still high, the dominant algae continue to thrive because they are able to take nitrogen out of the air rather than the water.

Another major factor is temperature. These nitrogen-fixing algae, which are actually cyanobacteria sometimes called “blue-green algae,” are insidious under condition of high phosphorus, low nitrogen, and warm temperatures. Grand Lake-St. Marys (GLSM) is an immense, but shallow lake that easily warms in the late summer. Therefore, with the right nutrients, it is perfect for a HAB.

Another factor is competition. Could other algae, like a group of algae called diatoms, use those nutrients, and grow when it’s warm? They probably can, but then maybe something else is keeping their populations in check. Last summer, AVS proposed that a key factor limiting diatoms could be silica, which they require for growth, and which in the past has been added to other systems to stimulate their growth.

This is an overly simplistic answer to the “causes” question, but it is widely agreed among scientists that nutrients and temperature are among the biggest drivers that cause HABs.

2. Can you explain how a company who is focused on growing algae would be able to help with stopping harmful algal blooms?

Well, for clarity, we don’t think we can stop HABs, without some restoration of the checks and balances such as those mentioned above. No single approach is going to end this problem. A variety of approaches are going to have to be implemented, and different combinations of technologies will be required at different sites, in order to stop a HAB. Frankly, that’s going to require a lot of continued research, as well as development of new technologies and methodologies.

AVS does know a thing or two about growing algae, and what they like, and what they don’t like, and we know more than almost anyone about how to harvest algae. As we and all other algal companies can tell you, growing algae at large scale is not a trivial process. But when you look at HABs, it happens “at scale” all the time. So a company like ours sees that at GLSM, there are a lot of algae floating up on the shores and into the back yards of beautiful lakeshore homes. Can we use our harvesting technologies to help ameliorate some of those effects, and maybe even put the recovered algal biomass to use somehow? While prevention of HABs should always be strived for, we thus think it is worth investigating whether more can be done when a bloom is in progress, and if it cannot be fully remediated, can positive outcomes be realized through some other means?

3. Algaeventure Systems is currently working with harmful algal blooms in Grand Lake St. Marys. How has your pilot program of adding silica to a certain area of the lake turned out?

The premise of this program was that if we could encourage the growth of diatoms, the diatoms might be able to outcompete the cyanobacteria. In the end, our amendment with silica did not have any adverse effects, but neither did it have the desired effect. That exercise was very important, because it has led to a better understanding of what is going on at GLSM. At the time we did our amendment, nobody had any data regarding silica concentrations in that lake, and there was little known about the biological profile of the types of algae in the system. We’ve since implemented our own monitoring program, and have learned that the silica concentrations are probably not low enough to limit diatom growth at GLSM. That, combined with the very hot temperatures last year, makes the outcome not surprising in hindsight. Our monitoring program has also made us aware of other algal species at GLSM that could potentially have a better chance at outcompeting the cyanobacteria. It would be a very involved research project to see if they can be stimulated, but one we might pursue in the future.

4. Do you think that large scale commercial production of algae could lead to the risk of more harmful algal blooms?

Like all industries and agricultural activities, commercial production of algae needs to include monitoring and waste management. The same nutrients that we use to deliberately grow algae can stimulate an algal bloom if they are recklessly dumped into a municipal system, stream, or water body. Because of our involvement at GLSM and interest in HABs, our company is more acutely aware of this than most. We work very closely with our municipal water officials, and monitor and meter our waste. There are some interesting possibilities here, too. For example, could our “spent” media used to grow algae be repurposed to fertilize a garden, or a field of corn? We are investigating such options, because of our commitment to operate an environmentally sustainable business.

5. An Algaeventure Systems representative recently testified at a Congressional hearing on algal blooms. What was the outcome of these hearings?

The legislation (HABHCRA) is still in review and is expected to be passed during this congressional session. HABHRCA has been in place for years, and funds most of the HAB research that is conducted at our coastal areas (e.g., Chesapeake Bay) and the Great Lakes (e.g., Lake Erie). The renewal of the legislation is in progress, as is the decision process regarding how much funding will be allocated to it. The significance of the hearings was to make sure that expert opinion was entered into the congressional record, so that it would be considered in the legislative and funding process. Points our company aimed to emphasize at the hearing were that the legislation neglects inland lakes like GLSM, and that very little is done in the area of remediation.

Dr. Stephanie Smith
Chief Scientist
Algaeventure Systems
http://www.algaevs.com/

 

Source: http://algaenews.com/2011/06/how-an-algae-company-is-working-to-mitigate-harmful-algal-blooms-in-nature/

Microbial Culture Collection ( NIES )

Culture strains of cyanobacteria, eukaryotic microalgae, protozoa and endangered algae are maintained in the Microbial Culture Collection at the National Institute for Environmental Studies (NIES Collection).
These strains are available for educational, research and developmental purposes.

NIES Collection accepts the deposition of strains, which are important for environmental as well as basic and applied researches.

 

MICROBIAL CULTURE COLLECTION
National Institute for Environmental Studies
16-2 Onogawa, Tsukuba, Ibaraki 305-8506, JAPAN
Phone : +81-29-850-2556

Fax : +81-29-850-2587

Source: http://mcc.nies.go.jp/localeAction.do?lang=en

Culture Collection of Algae and Protozoa ( UK )

CCAP currently maintains over 2500 strains of algae and protozoa, comprising:
• a wide range of microalgal taxa, including the cyanobacteria
• small thalloid red algae
• a range of small multicellular seaweeds, including over 300 strains of Ectocarpus
• free-living non-pathogenic protozoa
• a small number of ACDP Class II, potentially pathogenic protozoa (all Acanthamoeba spp.)

Strains are primarily maintained by serial sub-culture although about 30% of the algal strains and 2% of the protozoan strains are cryopreserved. In order to maintain genetic stability most effectively, research is continuing to develop protocols to increase the number and diversity of cryopreserved strains throughout the Collection.

All cultures are freshly prepared to order, so when ordering please allow sufficient time for the cultures to be grown. For orders of one culture of each strain, 4 weeks is usually sufficient, but please allow extra time for multiple cultures of each strain, or for strains which are held at CCAP only under cryopreservation (as indicated in the strain data).

Source: http://www.ccap.ac.uk/cultures/cultures.htm

UTEX- The Culture Collection of Algae at the University of Texas at Austin

History, Structure, and Purposes of UTEX

The Culture Collection of Algae at the University of Texas at Austin, herein designated as “UTEX”, has been in continuous operation since 1953.  It was established by Richard C. Starr at Indiana University and was moved to its present site in 1976. Dr. Starr was the Director of UTEX from its inception until his untimely death in February of 1998, at which time Jerry J. Brand became the Director.

Dr. Jerry Brand


 

The principal resource of UTEX is its extensive collection of living algae. Nearly 2,800 different strains of algae, representing approximately 200 different genera, are provided to the public at modest charge. The Collection maintains an especially strong representation of freshwater and edaphic green algae and cyanobacteria, but includes representatives of most major algal taxa, including many marine macrophytic green and red algae. All strains in the Collection were obtained as isolates from natural sources, and no genetically altered strains are maintained. Approximately half of UTEX strains are axenic and all cultures are unialgal.

The Culture Collection of Algae is administrated as an Organized Research Unit of the University of Texas in Austin through the College of Natural Sciences. Its principal administrative officer is a Director who is responsible for establishing and enforcing policies regarding the management of UTEX.  The resources of UTEX are managed through a Curator. The primary duties of UTEX staff are transferring cultures to fresh media on regular schedules, shipping cultures to users, keeping records related to sales and inventory, preparing media, and managing glassware.

The principal function of UTEX is the maintenance of its diverse stock of living algae, in order to make these algal strains available to a user community worldwide at modest cost. Cultures in the Collection are used especially for research, but also for biotechnology development, teaching, water quality assessment, food for aquatic animals, and a variety of other purposes. UTEX does not impose restrictions regarding the use of cultures that are purchased and does not assume any responsibility for cultures that are sold and sent away from the facility.

UTEX is a nonprofit organization. Principal financial support is obtained through the National Science Foundation of the U.S.A. Additional support comes from the College of Natural Sciences of The University of Texas at Austin and through the sale of cultures to the user community.

Dr. David Nobles

Dr. David R. Nobles, Jr. earned a Ph.D. in Botany from the University of Texas at Austin in 2006. He studied under Dr. R. Malcolm Brown, Jr., a noted phycologist, microscopist, cell biologist, and leading cellulose researcher. During his time in the R. Malcolm Brown, Jr. Laboratory, Dr. Nobles became familiar with diverse algae via the study of cell wall biosynthesis. His doctoral research focused on the cell biology, molecular biology, and biotechnological aspects of cellulose biosynthesis by cyanobacteria. He received the Outstanding Dissertation Award for his dissertation entitled “Cellulose in the Cyanobacteria”. His postdoctoral research focused on the development of cyanobacteria as sources for biofuel feedstocks. To date, he has developed methods for the cyanobacterial production of cellulose, glucose, and sucrose. Dr. Nobles is a co-author of multiple patents based on this research and is a founding member of Phykotek, Inc., a startup company dedicated to the production of cyanobacterial feedstocks. His current research interests include expanding the number of sequenced algal genomes; the development of novel algal systems for genetic and metabolic engineering; utilizing the amazing diversity of algae for biotechnological applications including the production of pharmaceuticals, biomass, and biofuels; and the use of algae for CO2 mitigation.

Selected Publications

Nobles, DR Jr. and Brown, RM Jr. (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15(5): 691-701.

Nobles, DR Jr. and Brown, RM Jr. (2007) Many Paths up the Mountain: Tracking the Evolution of Cellulose Biosynthesis, in Brown, RM Jr. and Saxena IM eds., Cellulose: Molecular and Structural Biology. Springer, The Netherlands, pp. 1-15.

Nobles, DR Jr., Romanovicz, DK, Brown, RM Jr. (2001) Cellulose in the Cyanobacteria. Origin of Vascular Plant Cellulose Synthase? Plant Physiology, 127(2): 529-542.

Patents

Title Patent Number Year Filed Inventors
Expression of Foreign Cellulose Synthase Genes in Photosynthetic Prokaryotes (Cyanobacteria) 20080113413 2007 R. Malcolm Brown, Jr.
David R. Nobles, Jr.
Transgenic cyanobacteria: A novel direct secretion of glucose for the production of biofuels 20080085520 2007 R. Malcolm Brown, Jr.
David R. Nobles, Jr.
Controlled, direct secretion of sucrose by cyanobacteria for the production of biofuels and plastics 20080124767 2007 R. Malcolm Brown, Jr.
David R. Nobles, Jr.
A cellulose producing marine cyanobacterium for ethanol production 20080085536 2007 R. Malcolm Brown, Jr.
David R. Nobles, Jr.

UTEX Staff (February 2010)

UTEX Staff (From top left): Jennifer Horn, Jingjie Yu, Rebecca Knight, Dr. David Nobles, Caribbean Wawrzyniak, Dr. Jerry Brand, Peter Petrzala, Rebekah Powell, Cathy Leba, Lina Rahman, Tracy Nguyen, Bonnie O’Neil, Ana Aguilar, Domini Maddox, Tinisha Hancock, Pei-Yun Tseng, Onanong Sasiponganan, Molly O’Neil, Meagan Murdock, Stephen Peña
Not pictured: Yi Tat Tong, Kimberly Ha